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INTRODUCTION 

We present the abstracts of the talks given during the workshop on cellular 
automata and their computer simulations which was held in Orsay. 

Cellular automata, although invented over 40 years ago by J. yon 
Neumann, have only recently been applied succesfully to describe processes 
in nature ranging from cell differentiation in biology to hydrodynamics. 
Cellular automata are networks which have a discrete variable and a rule 
on each site. The rule determines the value of the variable at the next time 
step so that the cellular automaton describes the time development of any 
configuration of variables. For this reason cellular automata are dynamical 
systems with many degrees of freedom, and the application of methods 
from statistical physics to them has been particularly successful in recent 
years. 

In Orsay we organized from September 26 to October 7, 1988, a 
workshop sponsored by the CECAM (Centre Europ6en de Calcul Atomi- 
que et Mol6culaire, Orsay) during which we discussed new developments 
concerning the applications of cellular automata. More precisely, we 
emphasised two aspects: how to model phenomena in nature via cellular 
automata and the use of powerful techniques (like large-scale computer 
simulations) applied to cellular automata. Since the majority of the 
participants had a background in statistical physics, there was a common 
language with regard to numerical methods and the corresponding 
extrapolation techniques. 

The first week of the workshop was devoted mainly to modelizations, 
two days more specifically to the biological aspects. Given the regulatory 
system of a genetic process, R. Thomas showed how to cast it into a finite 
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automaton. A more generic model for molecular evolution was proposed 
by L. Peliti. G. Weisbuch explained the essentials of immunology, making 
clear that the difficult tasks of the immune system can only be performed 
via feedback loops. Finally, S. Solla gave a short course on the large variety 
of neural networks that have been invented to describe the various 
processes going on in the brain. 

The group from Florence and P. Tamayo both brought special cellular 
automata computers, i.e., electronic boards that are plugged into an 
IBM PC and which act like an independent processor simulating a cellular 
automaton. The software for the processors resides on the PC and is used 
to program the rule of the automata and to control the execution on the 
board. The time evolution of the automaton can be visualized on a color 
screen with about 50 updates of the whole system per second. F. Bagnoli 
and A. Fransescato presented the general structure of a cellular automaton 
computer and gave details on the architecture of the machine built in 
Florence. P. Tamayo used this machine to show the time development of a 
very entertaining family of automata which model reactions producing 
spatial patterns like the Belousov-Zhabotinsky reaction. 

Other cellular automata that describe chemical reactions were presen- 
ted by M. Droz and the particular case of catalyzed oxydation was treated 
by P. J. Plath. 

The solution of hydrodynamic equations is of great technological 
importance, but their numerical solution often runs into accuracy problems 
due to roundoff errors. A promissing way out seems to be the lattice 
gas automata in which particles follow linear trajectories except when 
they collide. The trick consists in finding the collision rules that yield the 
correct macroscopic behavior. Y. Pomeau and S. Zaleski presented this 
exciting development. Another way of simulating fluids, in particular the 
Rayleigh-B6rnard instability, was proposed by S. Ruffo. 

The second week of the workshop was closer to traditional statistical 
physics. D. Stauffer looked at the final state of all the 65,536 rules on the 
square lattice with nearest-neighbor inputs. A. Hansen described the 
transition between the frozen and the chaotic phase as a directed percola- 
tion problem. 

The spreading of damage was a very popular subject. Two initial con- 
figurations that differ only in very few sites (damage) are submitted to the 
same cellular automaton. Since usual Monte Carlo can be considered as a 
probabilistic automaton, one can detect in this way phase transitions in the 
dynamics of, e.g., the Ising model. A. Coniglio showed an exact equivalence 
between the damage and correlation functions. B. Derrida presented the 
scenario that emerges for spin glasses. Damage spreading in the Kauffman 
model is particularly interesting. The sites that never change (stable core) 
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were calculated by H. F. Flyvbjerg and evidence for the multifractality of 
the damage probability distribution was given by N. Jan. 

The question of how to define the complexity of a dynamical system 
was discussed by P. Grassberger. He presented many possible definitions, 
but concluded that none of them is really satisfactory. 

Neural networks with or without feedback loops can have a very rich 
behavior. S. Solla showed how they can learn. A. Zippelius showed the 
effects that arise if the couplings are asymmetric. K. Kurten stressed more 
the relation to cellular automata and J. P. Nadal the connection to spin 
glasses. 

A fascinating new automaton that shows self-organized critical 
behavior was presented by P. Bak. I. Webman also presented a new 
automaton in one dimension. C. Tsallis gave results on a generalization of 
the automaton introduced by Domany and Kinzel, and M. Kolb showed 
evidence that a lattice gas is a good random number generator to the point 
that one can reproduce the density profile of diffusion. 

The workshop ended in a do-it-yourself course on the CAM6, the 
cellular automaton computer brought by P. Tamayo. 

In the following we give the abstracts of the talks. 

L. de Arcangelis and H. J. Herrmann 
SPhT, CEN Saclay, 91191 Gif sur Yvette Cedex, France 

M. Kolb 
PhMC, Ecole Polytechnique, 91128 Palaiseau Cedex, France 

Asynchronous Logical Description 
of Biological Regulatory Circuits 

Ren6 Thomas 

D6partement de Biologie Mol6culaire, 
Facult6 des Sciences, Universit6 de Bruxelles, 
1640 Rhode St. Gen6se, Belgium 

Biological regulatory systems are based on negative feedback loops which 
ensure homeostasis and positive feedback loops which permit a choice 
between two or more attractors; most systems comprise several intertwined 
loops. 

In logical descriptions, variables and functions can take only a limited 
number of values (0, 1, 2,...). We associate with each relevant element of a 
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system, not only a logical variable (a, b, c,...) whose value describes the level 
(e.g., concentration) of the element, but also a logical function (A, B, C,...) 
which describes its evolution. For example, in genetics a - - 1  means that a 
gene product is present (i.e., above its threshold of efficiency), a = 0 that is 
absent; and A = 1 means that the corresponding gene is on (i.e., the rate of 
synthesis is significant), A = 0 that the gene is off. The system is described 
by logic of the form: A = f l ( a ,  b, c...), B =J)(...). 

At any time A is a function of the values of a, b, c at that very time 
(no delay); in turn, the value of each variable depends on the earlier value 
of the corresponding function, with a time delay characteristic for each 
transition. 

This formalism (kinetic logic) can be used for both biological 
regulatory circuits and asynchronous automata.  It  has in fact been used not 
only in various fields of biology, but also in climatology (C. Nicolis) and 
other disciplines. 

Inductive use, Instead of proceeding from model to behavior, one can 
ask to what extent it is possible to proceed rationally from behavior to 
models (usually the simplest models which account for the observations). 

Generalized method. Now, we use variables and functions with more 
than two values whenever there is a qualitative reason to do so. Moreover, 
we use logical parameters (E. H. Snoussi) which permit us to account for 
the qualitatively different situations due to the various respective weights of 
the logical terms. There is a remarkable complementarity between the 
generalized kinetic logic and differential descriptions. 

R E F E R E N C E S  

1. R. Thomas, Lectures Notes Biometh. 49:189 (1983). 
2. M. Kaufman, J. Hurbain, and R. Thomas, J. Theor. Biol. 114:527 (1985). 
3. M. Kaufman and R. Thomas, J. Theor. Biol. 129:141 (1987). 
4. R. Thomas and J. Richelle, Discrete Appl. Math. 19:381 (1988). 

A Simple Model of Molecular Evolution 

C. Amitrano, L. Peliti, and M. Saber 

Dipartimento di Scienze Fisiche, Universitfi di Napoli, 
Mostra d'Oltremare, I 80125 Napoli, Italy 

We consider a population of fixed size M, composed of individuals, the 
state of each of which is described by a collection of N Ising units ~r/. The 
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population undergoes a mutation and selection cycle (called generation); 
first, a smalll number of units have their state changed; second, the fitness 
H of each individual is evaluated, and the individual is removed with a 
probability dependent on H: 

p = {1 + e x p / ~ ( H - H o ) }  -~ 

The fitness H is a function dependent on the state of the N units of the 
individual. The gaps of the population are then filled in by making copies 
of randomly chosen individuals among the surviving ones. The fitness 
function is chosen to be either of the form of a spin-glass Hamiltonian 

where the Jo are independent random variables for each pair of units, or 
as a fully random function, i.e., one whose value for each of the 2 N possible 
states is an independent random variable. 

The population rapidly assumes a peaked distribution in the space 
of states. The peak evolves in state space with a diffusion constant inde- 
pendent of the population size. Its evolution may be neutral or adaptive 
according to the value of the threshold H 0. The sharpness parameter /~ 
controls the dispersion of the population (with more peaked populations 
corresponding to lower values of /~). The transition from neutral to 
adaptive behavior corresponds to a phase transition in a statistical 
mechanical model corresponding to the Hamiltonian H. 

Dynamical Phase Transition in Immune Networks 

G. Weisbuch 

Laboratoire de Physique Statistique de l'Ecole Normale Sup~rieure, 
Paris Cedex 05, France 

The immune system is composed of cells (lymphocytes) and macro- 
molecules (antibodies) that can react with any foreign substance (antigen) 
in order to destroy it. There exist an immense variety of antibodies in terms 
of primary sequences and shapes, and only a few species among them react 
with a given antigen: the chemical specificity of the reaction (the so-called 
recognition) is based on complementarity of the shapes of the antigen and 
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the antibody: it is often compared to a lock-and-key selection mechanism. 
Recognition then triggers the multiplication of those antibodies which are 
specific to the antigen, which is further destroyed because of their presence. 

But the antibody can also play the part of an antigen and elicit a 
secondary response of other antibodies, which further react against it. Of 
course, those secondary antibodies themselves elicit a tertiary response and 
so on. We are then in the presence of a network of interacting chemical and 
cellular species. We represent it by a network of threshold automata (also 
called a neural net, or a spin glass at zero temperature). The automata 
represent populations of cells or antibodies of a given specificity and the 
intensity of their connections represent their chemical and functional inter- 
actions. Due to the scarcity of information about the set of interactions in 
the immune system and to the difficulties of predicting them from calcula- 
tions, we used the approach of inverse dynamics. 

We definitely do not want the network to have a chaotic behavior, 
such that any perturbation, such as those introduced by the presentation of 
only one antigen, would change the state of a finite fraction of the units of 
the net; such a change would scramble any memory effect due to previous 
antigen presentations. On the contrary, we want one antigen presentation 
to elicit changes among a small number of antibody species, in order to 
control the immune response. The transition between organized and 
chaotic behavior has been thoroughly studied by Derrida. We applied his 
results (1) to a network made of threshold automata with a mean threshold 
of h and with k connections randomly chosen of amplitude + 1 or --1: 
such a net remains in the organized regime if the threshold h is larger than 
(k. log k) ~ 

R E F E R E N C E  

1. B. Derrida, J. Phys. A. Math, Gen. 20:L721-725 (1987). 

Computational Neuroscience 

Sara A. Solla 

AT & T Bell Laboratories, 
Holmdel, New Jersey 07733 

Some features of biological neurons are captured by model neurons as 
simple input-output  devices that perform a nonlinear transformation on a 
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linear combination of inputs. Networks of many such devices with a large 
degree of connectivity exhibit interesting computational abilities, which 
emerge as collective properties of the system. Feedback networks are par- 
ticularly useful for recall and associative memory, while layered networks 
are preferable for categorization, recognition, and diagnosis. 

The goal is to understand the emergent properties of the networks 
through their mechanisms for parallel distributed processing. (1~ Experimen- 
tal neurobioIogy provides a rich understanding of brain functions at the 
molecular and cellular level. Such features need to be incorporated into 
models to describe high-level functions as emerging from the organization 
and interaction of low-level components. 

The utility of simplistic neural models is illustrated by two examples 
from the mammalian visual system: orientation selectivity in the striate 
cortex, (2~ as described by a feedback network with massive inhibition, and 
the extraction of shape from shading, (3/ as described by a layered neural 
network. 

R E F E R E N C E S  

l. T. J. Sejnowski, C. Koch, and P. S. Churchland, Science 241:1299 (1988). 
2. D. H. Hubel and T. N. Weisel, 3". Physic. Lond. 160:106 (1962). 
3. S. R. Lehky and T. J. Sejnowski~ Nature 333:452 (1988). 

Architecture for Cellular Automata Machines 

F. Bagnoli, A. Francescato, R. Livi, and S. Ruffo 

Istituto Nazionale di Fisica Nucleate, Sezione di Firenze, 
250125 Firenze, Italy 

Cellular automata are the extreme consequence of parallel computation, as 
they are made of a large number of synchronous processors with fixed 
connections: each of them can perform only a small set of operations, In 
the machine designed by Cabibbo, Medici, and Petrarca that our group 
developed in Florence, a definite architecture is chosen. It is based on a 
serial scanning of the lattice, a temporary memory from which one can get 
out the neighborhood of each cell in parallel, and a lookup table to code 
the rule. The machine is driven by a customary interpreter written in 
C-language and can be connected to ordinary PC's. Performence is similar 
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to that of the Toffoli machine. ~1) Extensive simulations of the statistical 
behavior of the "game of life" have been performed on the machineJ 2~ 

The main bottlenecks of this architecture are capacity of the lookup 
table and impossibility of performing real-time data analysis. From a 
general point of view an object-oriented and machine-independent software 
would be preferable. In order to improve performances in this direction, 
we are designing a more powerful and flexible machine with an open 
architecture. 

REFERENCES 

1. J. Toffoli and N. Margolus, Cellular Automata Machines (MIT Press, 1987). 
2. F. Bagnoli, A. Francescato, R. Livi. and S. Ruffo, in preparation. 

Discrete Models for Reaction-Diffusion 
Systems and Cellular Automata 

Pablo Tamayo 

Center for Polymer Studies and Physics Department, 
Boston University, Boston, Massachusetts 02215 

The three-state Greenberg-Hastings model for excitable media produces 
oscillatory patterns reminiscent of those observed experimentally in the 
Belousov-Zhabotinsky reaction. A reversible cellular automata based on 
this model displays a rich variety of space-time patterns. The system 
evolves in one of three regimes according to the initial conditions chosen: 
(1) a regular regime characterized by solitons and short recurrence times; 
(2) a turbulent-like regime with long-range coherent regions; and (3)a 
random-looking regime without coherence or regularity. ~1-3)'1 

REFERENCES 

1. P. Tamayo and H. Hartman, C.A, reaction-diffusion systems and the origin of life, in 
Art~'cial Life Workshop (Santa Fe Institute Studies in the Sciences of Complexity ), 
C. Langton, Ed. (Addison Wesley, 1988). 

2. J. M. Greenberg and S. P. Hastings, Spatial patterns for discrete models of diffusion in 
excitable media, Siam J. Appl. Math. 34(3):515 (1978). 

3. T. Toffoli and N. Margolus, Cellular Automata Machines (MIT Press, 1987). 
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Nonequilibrium Phase Transitions 
and Cellular Automata 

Michel Droz 

Department of Theoretical Physics, 
University of Geneva, 
CH-1211 Geneva 4, Switzerland 

A cellular automata model of surface reaction is discussed. This model 
describes a simple adsorption-dissociation-desorption process on a catalytic 
surface. Analytical mean-field-like results as well as "exact" solution 
obtained by simulation on a special purpose computer are reviewed. This 
model exhibits two second-order nonequilibrium phase transitions. The 
stationary critical exponents /~ characterizing the behavior of the order 
parameters near the transitions as well as the dynamical critical exponent 
A describing the critical slowing down are computed. The results are inter- 
preted in view of what is known for several other models showing non- 
equilibrium phase transitions. The problem of the existence and charac- 
terization of universality classes for nonequilibrium critical exponents is 
then discussed. 

REFERENCES 

l. B. Chopard and M. Droz, J. Phys. 21:205 (1988). 
2. M. Droz and B. Chopard, Heir. Phys. Acta 61:801 (1988). 

A One-Dimensional Cellular Automata 
As a Model for the Heterogeneously 
Catalyzed Oxidation of CO 

Peter Jiirg Plath 

Institute of Applied and Physical Chemistry, 
Universit~it Bremen, 
Bibliothekstr. 2, 
7800 Bremen 33, Federal Republic of Germany 

Experimental results of the catalytic oxidation of CO by Pd single crystals 
in a realite matrix are reported. There are constraints for which the 

822/55/5-6-31 



1342 Romano 

stationary state of this system is an oscillatory one. The corresponding time 
series resembles self-similar patterns. A table is given to show how these 
patterns can be simulated by a one-dimensional cellular automaton. The 
level of describing the reaction is carefully discussed to give good reasons 
for the chosen macroscopic interpretation of the automaton. The sum of 
cells in the nonactive states of the automaton at time t is just the value 
which can be compared with the observable of the chemical system. Time 
series, Poincar6 maps and Fourier spectra of the cellular automaton and 
the chemical system are compared to show the qualitative agreement of 
both the systems in several properties/1 4) 

REFERENCES 

1. N. I. Jaeger, K. M611er, and P. J. Plath, J. Chem. Soc. Faraday Trans. 1 82:792 (1986). 
2. P. J. Plath, K. M611er, and N. I. Jaeger, J. Chem. Soc. Faraday Trans I 84:1751 1770 

(1988). 
3. P. J. Plath and H. Priifer, Z. Phys. Chem. Leipzig 268:235 249 (1987). 
4. P. J. Plath, Optimal Structures in Heterogeneous Reaction Systems (Springer-Verlag, Berlin, 

1989). 

Proposals Toward Simulation 
of Long-Ranged Cellular Automata 

S. Romano 

Physics Department, University of Pavia, 
27100 Pavia, Italy 

1. Let us consider a classical system, consisting of n-component unit 
vectors associated with a d-dimensional (hypercubic) lattice {u~/Ke Z J}, 
and interacting via an isotropic [i.e., O(u)-symmetric] translationally 
invariant pair potential. 

Vik = f ( I I i  -- kII) tP(uiuk) 

Some general symmetry properties hold (a) for plane rotators (i.e., n = 2) 
and (b) for any 5 u being an odd function of its argument. 

We now specialize the potential to 

V,k--sIIi--kII-a-P(uluk), s > 0 ,  p > 0  

A number of results are known for these models (e.g., existence of 
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an ordered phase, at low but finite temperature, existence of a 
Kosterlitz-Thouless transition, critical exponents via RG), whereas very 
little is known about their antiferromagnetic counterparts, and some open 
questions remain (e.g., d =  1, n = 2, ~r = 1). 

2. At the simplest level, a one-dimensional cellular automaton with 
"synchronous updating" is defined by a rule of the form 

s~(t+ I)=F(S~(-o), S~ ,(v)) 

where F is an appropriate Boolean function symmetric with respect to 
interchange of S , _  i and Sk+~. 

The possible functional forms of F consistent with appropriate 
constraints ("legal rules") have been classified, and also nondeterministic 
rules have been studied. 

3. I now aim at simulating one-dimensional automata with long- 
range interactions, in order, so to speak, to bridge the gap between 
paragraphs l and 2. A general form for updating rules can be devised. We 
have 

a , e { - l ,  +1} allk, a l l t  

S ( x ) = l ,  x < 0 ,  x = 0  

S(x)=  -1 ,  x > 0  

~,~ = ~ g ( I I i -  IIk) ~i 

where the series ~ g ( m )  converges absolutely. There are too many 
adjustable parameters; we restrict their number by imposing 

g ( m )  = m - 2 

Additional constraints can be determined by considering some selected 
configurations. 

REFERENCES 

I. N. D. Mermin and H, Wagner, Phys. Rev. Lett. 17:1133 (1966). 
2, J. Fr6hlich and T. Spencer, Commun. Math. Phys. 81:527 (198l). 
3. F. J. Dyson, Commun. Math. Phys. 12:91, 212 (1969); 21:269 (197l). 
4. J. Fr6hlich, R. Israel, G. H. Lieb, and B. Simon, Commun. Math. Phys. 62:1 (1978). 
5. J. Fr6hlich and T. Spencer, Commun, Math. Phys. 84:87 (1982). 
6. H. Kunz and C. E. Pfister, Commun. Math. 46:245 (1976). 
7. S. Romano, Nuovo Cimento B 100:447 (1987). 
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Hydrodynamics by Lattice Gas Automata 

Yves Pomeau 

Laboratoire de Physique Statistique, 
75231, Paris Cedex 05, France 

Besides their own interest, cellular au tomata  (CA) may be used for model- 
ing physical systems tl) made up of large assemblies of similar interacting 
entities. The first condit ion for this is to have something like Hamil tonian 
dynamics in discrete and fully deterministic systems. The first step in that 
direction was made  by Edward  Fredkin,  who has defined a fairly general 
class of reversible CA, This may be extended ~2) to a dynamical  model  of the 
Ising spin system. Another  application of the same concept  is to gases and 
fluids. This was made for a gas on a square lattice ~31 then on a hexagonal  
lattice, ~4~ which represents fairly well the dynamics of a real fluid on large 
scales of space and time. This has been extended since to 3d fluids ~51 and 
to various cases with free boundaries  t6) that  are notoriously difficult to 
handle by classical methods, 

R E F E R E N C E S  

1. S. Wolfram, Theory, and applications of CA (World Scientific, 1986); N. Margolus and 
T. Toffoli, Cellular Automata Machines. A New Environment for Modeling (MIT Press, 
1987); G. Doolen, ed., Complex Systems 1(4) (August 1987). 

2. Y. Pomeau, J. Phys. A 17:L-415 (1984). 
3. J. Hardy, O. de Pazzis, and Y. Pomeau, Phys. Rev. A 13:1949 (1976); J. Math. Phys. 

14:17466 (1973); J. Hardy and Y. Pomeau, J. Math. Phys. 13:1042 (t972). 
4. U. Frisch, B. Hass/acher, and Y. Pomeau, Phys, Rev. Lett. 56:1505 (1986);. D. d'Humi6res, 

Y. Pomeau, and P. Lallemand, C.R. Acad. Sci. Paris II 301:1391 (1985). 
5. D. d'Humi~res, P. Lallemand, and U. Frisch, Europhys. Lett. 2:291 (1986). 
6. P. Clavin, P. Lallemand, Y. Pomeau, and G. Searby, J. Fluid Mech. 188:437 (1988). 

Fluid Mixtures with Lattice Gas Methods 

St~phane Zaleski 

Laboratoire de Physique Statistique, CNRS, 
Ecole Normale Sup+rieure, 75231 Paris Cedex, France 

Much  research has been directed recently to the t reatment  of fluid mixtures 
with lattice gas methods.  (General  references about  lattice gas methods  can 
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be found in Pomeau's contibution.) Mixtures of noninteracting species 
have been studied in ref. 1. A simple diffusive behavior is then obtained. 
Reacting mixtures have been introduced in which separation in two phases 
is observed/2) A more tricky problem is to introduce repulsive interactions 
between species so that surface tension is also obtained. This was done by 
the introduction of immiscible lattice gases in ref. 3. A different method that 
also yields surface tension was proposed in ref. 4. Immiscible lattice gases 
have given rise to much interest recently because of their potential for the 
study of problems such as Rayleigh-Taylor instabilities and the invasion of 
porous rocks by fluids with wettability properties. ~5~ Spinodal decomposi- 
tion may also be studied with such methods, either on the Ising model with 
microcanonical Kawasaki dynamics ~6~ or with different models recently 
implemented on the CAM 7 special-purpose machine. ~7/ These least two 
models do not conserve momentum, but have an invariant energy and thus 
ae microcanonical models. The spinodal decomposition in the immiscible 
lattice gases of ref. 3 was investigated in ref. 8. It is of a different nature 
because while momentum is conserved, energy is not. All the previously 
mentioned models have two dimensions of space, but an extension of the 
immiscible lattice gas to 3 dimensions was described recently. 19~ 
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A Cellular Automata for 
the Rayleigh-B6nard Instability 

S. Ruffo 

Istituto Nazionale di Fisica Nucleare, 
Sezione di Firenze, Firenze, Italy 
and FacoltS. di Scienze MFN, 
Universit~ della Basilicata, Italy 

Recently experiments on Rayle igh-B6nard convect ion at intermediate 
Rayleigh number  have shown the presence of phenomena  reminiscent of 
phase transitions/1) 

Simulations have been performed in systems of coupled maps which 
show similar p h e n o m e n a ]  2) 

I propose a model for Ciliberto's experiment based on probabilistic 
cellular au tomata ,  which shows a transit ion from confined to deconfined 
turbulence.~3) 

Some probabilistic behavior  of the fluid system is well described, but 
there remains some degree of determinism which is not  all explained. 

R E F E R E N C E S  

1. S. Giliberto and P. Bigassi, Phys. Rev. Lett. 60:286 (1988). 
2. H. Chat6 and P. Manneville, Phys. Rev. Left. 58:112 (1987). 
3. F. Bagnoli, S. Ciliberto, A. Francescato, R. Livi, and S. Ruffo, in Chaos and Complexity, 

R. Livi, S. Ruffo, S. Ciliberto, and M. Buiatti, eds. (World Scientific, 1988), p. 318. 

Toward a Classification of 
All Square Lattice Cellular Automata 

D. Stauffer 

HLRZ, c/o KFA J/ilich, 5170 Jiilich 1, West Germany 

All 65,536 au tomata  on the square lattice with nearest-neighbor inter- 
actions, ignoring the central spin, were simulated. About  4--8% of them 
ended in the fixed point  "all spins down,"  the same amount  in the fixed 



Damage in Determin is t ic  Cel lular Au tomata  1347 

point "all spins up," nearly 3 % in periods of two with mixed configura- 
tions, and less than 1% in oscillations between all spins up and all spins 
down, and in fixed points with a mixture of up and down spins. Damage 
spreading studies are planned. Upon changing the initial concentration of 
randomly placed up spins from 50 to 90%, about 1000 automata changed 
their above behavior. A more detailed investigation of the 64 symmetric 
rules showed four phase transitions, among them two with critical slowing 
down. Perhaps these transitions vanish logarithmically in the thermo- 
dynamic limit. 

REFERENCES 

1. S. Wolfram, Theory and Applications of Celhdar Automata (World Scientific, Singapore, 
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Spreading of Damage and Percolation 
in Deterministic Cellular Automata 

Luciano R. da Silva 1 and Alex Hansen 2 

Institut f/ir Theoretische Physik, 
Universit/it zu K61n 
D-5000 Koln 41, Federal Republic of Germany 

St~phane Roux 

Laboratoire dHydrodynamique et M6canique Physique, UA 857, 
Ecole Sup~rieure de Physique et Chimie Industrielles, 
F-7523l Paris Cedex 05, France 

We identify a substructure constructed from the rules on which the damage 
spreads in a certain class of deterministic cellular automata (~) known as 
"legal" ones. A legal cellular automaton (2) is defined as having at least one 
state that maps onto itself. It can be shown that this substructure of the 
rules must percolate in order for the state that maps onto itself to be 

1 Present address: Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 
59000 Natal, Brazil. 

2 Present address: IBM Bergen Scientific Center, N-5000 Bergen, Norway. 
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unstable against damageJJ~ We present numerical evidence that in the ther- 
modynamic limit the percolation critical point and the onset of chaos 
where the cellular automaton becomes susceptible to damage coincide. This 
evidence is based on extensive computer experiments on several different 
inhomogeneous cellular automata. 

We also present a transformation of general deterministic cellular 
automata into a form that makes it possible to identify a substructure 
among the cellular automaton rules that has the same properties as the one 
identified in the case of legal cellular automata with respect to damage 
spreading. Also in this case the percolation critical point in the ther- 
modynamic limit coincides with the onset of chaos] 4/ 

The results show that the damage-spreading phase of deterministic 
cellular automata may be identified with a percolating phase of the above- 
mentioned substructure of the cellular automaton rules. 
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Damage Spreading in the Ising Model 

Antonio Coniglio 

Dipartimento di Scienze Fisiche, Universita di Napoli, 
80125 Napoli, Italy 

We use the concept of damage spreading to characterize in a dynamical 
way the critical behavior of a ferromagnetic Ising model at the critical tem- 
perature. We show that: ( a ) T h e  damage or Hamming distance between 
two configurations, respectively with plus and minus boundary conditions, 
submitted to the heath-bath dynamics using the same random numbers 
equals the magnetization; (b ) the  probability to damage at a site at 
distance r from a fixed damage at the origin is proportional to the pair 
correlation function, and (c) in the last case the sum of all damaged sites 
is proportional to the susceptibility. This approach not only provides an 
efficient way to calculate correlation functions and magnetization, but also 
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to produce a geometrical picture of spin fluctuations. These are visualized 
as clusters of damaged sites which have a fractal dimension d-~/v at To, 
where d is the Euclidean dimensions and /~ and v are Ising exponents. 
Finally, we also express the size distribution of the clusters of damaged  
sites in a scaling form which contains the static Ising critical exponents. 
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Dynamical Phase Transitions 
in Networks of Random Automata 1 

B. Derrida 

Service de Physique Theorique de Saclay, 
Laboratoire de I'Institut de Recherche Fondamentale 
du Commissariat i l'Energie Atomique, 
F-91191 Gif-sur-Yvette Cedex, France 

By compar ing  the evolution of two spin configurations for networks of 
r andom automata ,  one can observe a dynamical  phase transition from a 
frozen to a chaotic phase. ~2/The chaotic phase is characterized by the fact 
that the distance between two spin configurations does not  vanish in the 
long-time limit and by a cont inuous  part  in the distribution P(m) of local 
magnetizations. (31 For  the Kauffman model,  which is a mean-field model, 
the distance can be calculated analytically (21 and one can write an exact 
integral equat ion ~3~ for P(rn). In finite dimension, no analytical work is 
available, but  numerical calculations ~4t of the distance and of P(m) give 
clear evidence for a transit ion from a frozen to a chaotic phase. When one 
introduces a temperature,  one can compare  two configurations subjected to 
the same thermal noise. ~5~ One  finds a transition at a finite temperature T~. 
Above T C, the distance vanishes, whereas below To, it has a finite limit 
independent of  the initial distance. 

~The work of which this is an abstract was presented elsewhere? 1' 
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Some Exact Results for Kauffman's Model 

Henrik Flyvbjerg 

Niels Bohr Institute, 
2100 Copenhagen, Denmark 

A brief historical introduction to Kauffman's model is given. It is explained 
how Kauffman tried to model the complicated genetic regulatory system of 
living organisms by a random network of deterministic automata, and how 
he compared results of his model with observations for living 
organisms. ~1,2~ 

Kauffman's model is a simple dynamical system with quenched disor- 
der. The basins of attraction of its limit cycles form a multivalley structure 
which is compared with that of spin glasses, the Sherrington-Kirkpatrick 
model to be specific. A striking similiarity is observed3 3~ 

The stable core of a network of automata is defined as the set of 
variables which after a transient time acquire a constant value that does 
not depend on initial data. It is shown how the size of the stable core may 
be computed analytically and used as an order parameter for the transition 
between the frozen and chaotic dynamics possessed by the model3 4/ 

The equation for the stable core is generalized to give an equation for 
the spectrum of local magnetizations P(m). Unexplained properties of P(m) 
are pointed out. ~5) 

In its totally connected version Kauffman's automaton becomes a 
random map in configuration space. Due to the absence of correlations in 
time in this case, a number of properties can be calculated analytically, 
among them g(W) ( =  the probability that a randomly chosen initial con- 
figuration belongs to a basin of attraction of relative size W) and ~p(Yp) 
(Yp being the probability that P randomly chosen configurations belong to 
the same basin of attraction. Yp is sample dependent with distribution 
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7~p(lip). Singularities and associated exponents in ~p(Yp) may be found 
analytically, and comparison with the equivalent distributions for the 
Sherrington-Kirkpatrick model and for randomly broken objects show 
that the presence and location of these singularities are universalJ 6'7t 

Finally, it is shown that also for connectivity K =  1 Kauffman's model 
is exactly solvable, and it is conjectured that this solution of the model may 
be used to solve it everywhere in its frozen phase, and may be even on the 
phase boundary.(8 

For a recent review of the subjects mentioned here see ref. 9. 

REFERENCES 

1. S. A. Kauffman, J. Theor. Biol. 22:437 (1969). 
2. S. A. Kauffman, Physics D 10:145 (1984). 
3. B. Derrida and H. Flyvbjerg, J. Phys. A.  Math. Gen. 19:L1003 (1986). 
4. H. Flyvbjerg, J. Phys. A.  Math. Gen., to appear. 
5. B. Derrida and H. Flyvbjerg, J. Phys. A: Math. Gen. 20:Ll107 (I987). 
6. B. Derrida and H. Flyvbjerg, J. Phys. 48:971 (1987). 
7. B. Derrida and H. Flyvbjerg, J. Phys. A: Math. Gen. 21):5273 (1987). 
8. H. Flyvbjerg and N. J. Kjaer, J. Phys. A: Math. Gen. 21:i695 (1988). 
9. H. Flyvbjerg, Acta Phys. Polon., to appear. 

Multifractality in the Kauffman Model 

Naeem Jan, Antonio Coniglio, and Dietrich Stauffer 

Physics Department.  St. Francis Xavier University, 
Antignish, Nova Scotia, Canada B2G 1CO 

We check how an initial disturbance, called the damage, spreads through 
a square lattice of Kauffman cellular automata at the critical point, 
P~ =0.29. We determine the moments of the probability that a site has 
been damaged n times, and check for multifractality in the fractal dimen- 
sions of these moments of the damage probability vs. (a) the length L of 
the lattice and (b) time. 

The ensemble consists of only these clusters that touch the edge of the 
lattice. Specifically, we find no evidence for multifractal behavior when the 
moments of the probabilities are evaluated with lattice size L, but multi- 
fractality occurs when the moments are monitored as a function of time. 
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This feature reflects the property that the frequency of the first passage time 
has a pronounced peak and an extremely long tail quite similar to that 
observed for the voltage distribution and random resistor network. This 
broad distribution and the absence of a unique characteristic time give rise 
to the multifractal behavior. 
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Self-Generated Complexity Studies 
by Means of Cellular Automata 

Peter Grassberger 

Physics Department, University of Wuppertal, 
D-5600 Wuppertal 1, West Germany 

I review proposed definitions of "complexity" which might be applicable to 
situations where this complexity seems to arise spontaneously. 

I first point out some properties which such a definition should obey. 
Among others, it should be observable, i.e., measurable in experimental 
situations. It should locate complexity somewhere between order and ran- 
domness. It should classify objects as complex if they involve hierarchies 
(in particular, "tangled," i.e., broken, ones), if they involve different-level 
concepts, or if they involve strong correlations or constraints between their 
parts. It is proposed that complexity of an object is a measure of the 
difficulty of some meaningful and important task done on the object. 
Examples are at times needed for reconstructing the object from its fastest 
defining algorithm ("time complexity") or from its shortest algorithm 
("logical depth"), difficulties of making optimal forecasts of time sequences 
("forecasting complexity"), and the amount of storage needed to store its 
shortest algorithm ("algorithmic complexity"). 

It is argued that no unique definition of complexity is to be expected, 
and that furthermore the desired distinction between randomness and corn- 
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plexity makes the latter a subjective quantity. It depends not only on the 
object, but also on what the observer considers as "meaningful." 

These considerations are illustrated with simple one-dimensional 
cellular automata. It is a particular shown that some of these automata 
lead to unexpectedly large complexities. 

A printed version of this talk will appear in Helvetica Ph)'sica Acta 
(Proceedings of Gwatt workshop, October 1988). 

Learning and Generalization 
in Layered Neural Networks 

Sara A. Solla 

AT & B Bell Laboratories, 
Holmdel, New Jersey 07733 

Layered neural networks are of interest due to their ability to implement 
input-output  mappings. The configuration space of all possible couplings 
for a fixed network architecture defines a probability distribution over 
the space of realizable mappings. The entropy of such distribution is an 
intrinsic property of the network architecture and a measure of its diversity. 

Supervised learning leads to an exclusion of the regions of configura- 
tion space corresponding to the realization of mappings incompatible with 
the training set. This process results in a narrowing of the probability dis- 
tribution over the space of input-output  mappings, and a decrease of the 
associated entropy. It is this residual entropy that limits the generalization 
ability of the resulting network. Learning can thus be described as an 
organizational process leading to entropy decrease, and its efficiency 
measured by the entropy decrease per example in the training set. 

The choice of a network architecture to implement a specific mapping 
is guided by two criteria: realizabilio, , in that the architecture must be 
intrinsically capable of realizing the desired mapping; and specificity, in 
that among all networks with such capability, those with lower intrinsic 
entropy are to be preferred to facilitate the learning process. 
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Spin-Glass Features of 
Asymmetric Neural Networks 

A. Zippelius 

Institute of Theoretical Physics, 
University of Gottingen, 
34 Gottingen, Federal Republic of Germany 

There are various ways characterize the low-temperature phase of a 
symmetric Gaussian spin glass with long-range interactions: nonzero local 
magnetic moments, a time-persistent part  of the spin autocorrelation, a 
divergent spin-glass susceptibility, anomalous slow relaxation, an exponen- 
tial number  of metastable states, the distribution of weights of the many 
equilibrium states, the distance between configurations, etc. I discuss which 
of these features persist in ( a )mode l s  with asymmetric, short-range 
Gaussian correlations of the couplings (but still infinite-range dinterac-  
tions) and (b) neural networks, which are asymmetrically diluted. I further- 
more present an example of a network with asymmetric couplings, which 
does show a spin-glass phase, characterized by time-persistent corre- 
lations.C1 
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Phase Transitions and 
Self-Organization Automata 

K. E. Kurten 

Institut fiir Zoologie [[[, Sektion Biophysik, 
Johannes Gutenberg-Universit/it, 6500 Mainz, West Germany 
and Institut ftir Theoretische Physik, 
5000 K61n, West Germany 

For diluted networks of random McCulloch Pitts threshold automata  a 
dynamical phase transition from a chaotic to an ordered phase can be 
observed by comparing the time evolution of two initial configurations in 
the thermodynamic limit. The chaotic phase is characterized by an 
exponential increase of the mean cycle length with the total number  of 
cells, whereas the ordered phase shows a power-law increase. At the critical 
point the behavior is intermediate. The model is also shown to share 
behavior and formal similarities with the Kauffman model. 

I further study systems with geometrically correlated couplings, such 
as nearest-neighbor and distance-dependent interactions, where to date no 
theoretical predictions exist. Computer  simulations show that threshold 
automata  residing on regular two-dimensional lattices exhibit by far more 
ordered behavior than their infinite-range counterparts. Automata  with dis- 
tance-dependent couplings show a phase transition when the interaction 
range decreases to a size comparable to a few nearest neighbors. 

Hebbian-like self-organization routines applied to any of these 
networks tend to reduce the appearance of chaotic modes substantially. 
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Dynamics of Neural Networks: 
Stability, Symmetry, and Self-Coupling 

Werner Krauth and Jean-Pierre Nadal 

Laboratoire de Physique Statistique de FENS, 
75231 Paris Cedex 05, France 

Marc M~zard 

Laboratoire de Physique Th6orique de FENS 
Paris Cedex 05, France 

We report recent results obtained on the dynamics of networks of formal 
neurons.(1 3) 

For a network of the perceptron type (one input layer and one output 
layer) we isolate two important sets of parameters which render the 
network fault tolerant (existence of large basins of attraction) in both 
heterossociative and autoassociative systems and study the size of the 
basins of attraction (the maximal allowable noise level still ensuring 
recognition) for sets of random patterns. These parameters are the 
"stabilities" of the stores patterns and the set of diagonal couplings. As a 
result, optimal associativity is obtained by computing the couplings with 
the "Minoverlap algorithm" introduced recently. 

For the full dynamics on a homogeneously connected network with no 
diagonal couplings, we show that a good estimate of the size of the basins 
of attraction is obtained by taking into account only the stabilities and the 
degree of asymmetry of the connections. The effect of the diagonal 
couplings is also analyzed. 
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Self-Organized Criticality 

Per Bak and Chao Tang 

Brookhaven National Laboratory, 
Upton, New York 11973 

We have studied a cellular automaton describing a threshold diffusion 
process. The automaton evolves into a critical point with no length or 
time scales. We suggest that systems in nature with self-similar fractal 
structure and power-law 1/.1" temporal correlations can be visualized as 
dynamical systems at the self-organized critical point. For instance, the 
power-law distribution of energy released at earthquakes, known as the 
Gutenber~Richter  law, may be a manifestation of the earth's crust being 
in a critical state. 
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Critical Behavior of Systems 
with Random Pinning 

Itzhak Webman 

Bergen Scientific Center IBM 36 Allegaten, 5007 Bergen, Norway 

The dynamics of a network of particles connected by harmonic springs 
subject to random local pinning forces and driven by a uniform external 
field E is studied analytically. The pinning forces act similarly to a local 
friction: a particle moves only if the total force acting on it is greater than 
a local pinning strength. These local pinning strengths are assigned at 
random to the particles (quenched randomness). The theory predicts a 
critical behavior at a threshold field E~. Below threshold, large domains of 
mobile particles nucleate and grow, and the system relaxes to a static state 
long after the field is switched on. In the static state the size of the largest 
domains diverges at criticality, and so does the total polarization (the sum 

822/55/'5-6-32 
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of the displacements of the system particles). During the slow relaxation to 
the final state, two major processes go on: (a) The formation and growth 
of mobile domains to their final size. (b) Further relaxation of the particles 
in stabilized domains. The relaxation of the polarization to the asymptotic 
value follows a power law growth succeeded by a stretched exponential 
time dependence. The dynamics shows a critical slowing down charac- 
terized by a time scale which diverges as E approaches Ec, while at Ec the 
polarization grows indefinitely following a power law in time with an expo- 
nent smaller than unity. The static and dynamical exponents related to the 
critical behavior of the system are obtained analytically. Above four dimen- 
sions the polarization does not diverge, but the critical slowing down of the 
dynamics persists. The core of the theory is a derivation of the asymptotic 
distribution of domains sizes p(L)  based on the set of conditions for the 
arrest of domain growth at a size L. Graphics obtained by numerical 
simulations of two-dimensional networks which illustrate the nature of the 
dynamics are presented. The theory is relevant to the very slow relaxation 
and to the giant polarization observed in recent experiments on charge 
density waves below the critical external field. More generally, this model 
may serve as a physical paradigm for the general concept of hierarchically 
constrained dynamics in glassy systems. 

Criticality of a Stochastic 
One-Dimensional Cellular Automaton 

M. L. Martins, H. F. V. Resende, C. Tsallis, and A. C. N. Magalhaes 

Centro Brasiliero de Pesquisas Fisicas/CNPq, 
22290 Rio de Janeiro, Brazil 

We consider a generalized version of the stochastic one-dimensional 
cellular automata studied by Kinzel. (1) It recovers Wolfram-like deter- 
ministic cellular automata as particular cases, and might present phase 
transitions between an absorbing (frozen) phase and a chaotic one. 
Through computational simulations we study te critical surface in the full 
parameter space as well as the universality classes (characterized by the 
behavior of the "order parameter" in the neighborhood of the critical 
surface). 
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Cellular Automata Approach to Inhomogeneous 
Diffusion and Gradient Percolation 

M. Kolb 

Laboratoire de Physique de la Matidre Condens~e, 
Ecole Polytechnique, 91128 Palaiseau, France 

A deterministic approach is presented for lattice diffusion in two dimen- 
sions.(~ This method is implemented on a cellular automaton special pur- 
pose computer  (CAM-6) in order to study the properties of the interface of 
particles diffusing from a source to a sink. Care has been taken to fully 
exploit the parallel architecture of the CA machine. ~2~ To show that 
geometrical properties are not affected by the deterministic implementa- 
tion, fractal properties of the diffusion front of this out-of-equilibrium 
process are compared with results from inhomogeneous percolation 
theory. ~3) The observed agreement indicates that diffusion fronts and 
gradient percolation coincide asymptotically and that the CA method is a 
viable alternative to standard simulations for this class of problems. 
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